.. ™

: : o _
ServiceObjects @ %¢ Tutorial
INSIGHT ON DEMAND

Introduction

This guide provides a step by step on how to implement a Service Objects DOTS web service into a simple web form using Java. This
project will be using the REST implementation of BIN Validation but will be similar for any REST implementation of a Service Objects
web service. This guide will be very basic and should help serve as a foundation to integrating one of Service Object’s web services
into your PHP application.

What to Expect:
We will demonstrate the implementation in two parts. The first part will demonstrate the process of calling and displaying the

results from a Service Objects web service and the second part will include a more applicable example of how to integrate some
useful business logic around the validated data from the Service Objects web service.

Audience

Any developer (beginner to expert), that is interested in integrating a DOTS web service into PHP web application.

Requirements

e PHP IDE — NetBeans was used in this example, but the steps should be relatively similar for another PHP IDE

e Basic Working Knowledge of PHP and server side scripting.

e A working License Key(trial or production) from Service Objects. Click here to obtain a free trial key for the service you are
most interested in.

Contents

Y=gV = O T o I o 1U] gl o) [T ot P RPRR 2
Designing Your Web FOrm and Adding the COUE.......uuiiiiiiiiie ettt et e e e ta e e e e ata e e e sata e e e sbaeeesantaeeeeesanes 6
o 11 Lo N =T g @oT = {U = 4 o Yo VOSSR 7
Processing the Results From A Service ObJects WD SEIVICEvviiieiiiii ettt et e e st e e e s bae e e sneees 8
Implementing Business Logic into Your Web Application. ...ttt e e et e e 9
(6073 Vol 11 To T o F PO USUPTROPRP 11

www.serviceobjects.com 1.805.963.1700 1.800.694.6269

Copyright © 2001-2016 Service Objects, Inc. All rights reserved. Service Objects and the logo are unregistered trademarks of
Service Objects, Inc., and Service Objects, Inc. owns other registered and unregistered trademarks. Other names used herein
may be trademarks of their respective owners.

ot
: : o
ServiceObjects @ %¢
INSIGHT ON DEMAND

Tutorial

Setting Up Your Project

Launch NetBeans and select File, and then New Project to create the web application. In the New Project window select PHP
Application and then click next as seen in the figure below.

Choose Project
Q, Filter: ||

Categories: Projects:

|) HTML5/JavaScript tip PHP Application

1)) pHp Eip PHP Application with Existing Sources
i cjc++ Eip PHP Application from Remote Server
i , Samples

Description:

Creates a new PHP 5 application in a standard IDE project. Such project can be easily run and
debugged.

<sack =

Figure 1

On the next screen, give the project an appropriate name and location of the project.

www.serviceobjects.com 1.805.963.1700 1.800.694.6269

Copyright © 2001-2016 Service Objects, Inc. All rights reserved. Service Objects and the logo are unregistered trademarks of

Service Objects, Inc., and Service Objects, Inc. owns other registered and unregistered trademarks. Other names used herein
may be trademarks of their respective owners.

.. ™

: : o _
ServiceObjects @ %¢ Tutorial
INSIGHT ON DEMAND

Steps Name and Location

Choose Project Project Mame: PHP_Rest_webFormTutorial|
Hame and Location

Run Configuration Sources Folder: Z:\WebFormTutorials\PHP _Rest_WebFormTutarial -

PHF Frameworks
Composer

PHP Version: PHP 5.6

PHF version is used only for hints

Default Encoding: \UTF-8

[] Put NetBeans metadata into a separate directory

Metadata Folder: |vanlant\Documents\MNetBeansProjects\PHP_Rest_WebFormTutarial Browse...

[< Back H Mext = ” Finish ” Cancel H Help

Figure 2

Now that the project has been created, we will need to add a php file to function as our input form and to handle the call to the
Service Objects web service. To do this, right click the project folder, select New and then select PHP File and you will be prompted
to name the file to be added. For this example, we will name the PHP file called restCall.php which will serve as our input form,
make the call to the web service and then process the results. This can be seen in figure 3.

www.serviceobjects.com 1.805.963.1700 1.800.694.6269

Copyright © 2001-2016 Service Objects, Inc. All rights reserved. Service Objects and the logo are unregistered trademarks of

Service Objects, Inc., and Service Objects, Inc. owns other registered and unregistered trademarks. Other names used herein
may be trademarks of their respective owners.

.. ™

: : o _
ServiceObjects @ %¢ Tutorial
INSIGHT ON DEMAND

LR |

File Edit View Mavigate Source Refactor Run Debug Team Tools Window Help
PEHES DCE @ 0 T %D 6
Projects | Files | Services =] |
@1 Source MNew P @ Folder...
- (g Indudd . |k PHP File...
un
[PHP Web Page...
Debug
fafl PHP Class...
Test Alt+F&
: @J PHP Interface...
Run Selenium Tests
s |[&] HTMLFile...
Set Cenfiguration L
[8] XHTMLFile...
Code Coverage L
e JavaScript File...
Generate Documentation P Ty Cascading Style Sheet...
et }m Sass File...
[fL LESS File...
Close
Other...
Rename...
Move...
Copy...
Delete Delete
Find... Ctrl+F
Versicning K
History k
Havigator &
Mavigator 2| |
Figure 3

Now that our PHP file has been properly added, we’ll need to configure it so that it will run properly. To do this select Run at the top
of the NetBeans program and then select Set Project Configuration and then Customize... In the Run As selection, highlight PHP
Built-in Web Server(running on built-in web server). Ensure that the name of the php file that was just added to the project is
placed in the Router Script section. This can be seen in the screen shot below.

www.serviceobjects.com 1.805.963.1700 1.800.694.6269

Copyright © 2001-2016 Service Objects, Inc. All rights reserved. Service Objects and the logo are unregistered trademarks of

Service Objects, Inc., and Service Objects, Inc. owns other registered and unregistered trademarks. Other names used herein
may be trademarks of their respective owners.

.. ™
: : o _
ServiceObjects @ %¢ Tutorial

INSIGHT ON DEMAND

----- @ Sources » | Configuration: :<default> v: Mew... Delete
----- 2 Run Configuration i
----- @ Browser : ==
JavaScript Libraries Run As: .PHP Built-n Web Server {running on built-in web server) i)
- @ npm
@ Bower Hostname: localhost
e @ CDNJS Port: 8000

- @ i)
| = : JavaScript Frameworks http: flocalhost:8000/ ‘
- @ Requirels |

|| i @ (S8 Preprocessors Router Script: |restCall.php

S @ Indude Path |
----- @ Ignored Folders Note:

I - @ Frameworks PHP 5.4.0 or newer is required.

[- @ Doctrine2
[- @ Nette2

| - @ Smarty
|

|

|

m

- @ Symfony2
- @ Testing

- @ atoum

- @ Codeception
-~ @ Mette Tester
- @ PHPURIt

----- @ JavaScript Testing

|| @ Selenium Testing =
----- @ Documentation

| - @ license Headers

QK. ” Cancel][Help]

Figure 4

www.serviceobjects.com 1.805.963.1700 1.800.694.6269

Copyright © 2001-2016 Service Objects, Inc. All rights reserved. Service Objects and the logo are unregistered trademarks of
Service Objects, Inc., and Service Objects, Inc. owns other registered and unregistered trademarks. Other names used herein
may be trademarks of their respective owners.

e
ServiceObjects .'..o Tutorial

INSIGHT ON DEMAND

Designing Your Web Form and Adding the Code

Now that we have successfully created the web application and added the necessary php page, we need to fill in script with the
necessary code that will receive the inputs, make the call to the Service Objects web service and process the results for the user. This
code be found in the restCall_Contents.txt file that is included with this tutorial.

The first thing the code does is instantiate the variables that input form will be passing to the rest call. It also sets the input-form
parameters to our PHP variables.

/alidation idateBIN?BinNumber=".urlencode($BIN).

nValidation. lidateB inNumber=".urlenc

cts BIN Validation'));

Figure 5: Basic CURL request

The code will also display a simple input form with a table that has inputs for BIN, and LicenseKey. There is also submit button that
will send the user entered information to the script behind the form and make the actual rest call to the web service.

After the user has entered a valid BIN number and LicenseKey into the input form, the script will then trim any whitespace on the
input variables and then pass then create the backup and primary by encoding the inputs for the curl request. The code will then
initialize the curl request and pass in the primaryURL to the curl request. After the curl request is completed, the code will
instantiate a SimpleXMLElement to process the outputs.

www.serviceobjects.com 1.805.963.1700 1.800.694.6269

Copyright © 2001-2016 Service Objects, Inc. All rights reserved. Service Objects and the logo are unregistered trademarks of

Service Objects, Inc., and Service Objects, Inc. owns other registered and unregistered trademarks. Other names used herein
may be trademarks of their respective owners.

e
ServiceObjects .'..o Tutorial

INSIGHT ON DEMAND

Failover Configuration

Within the code that makes the call to the web service, we’ve included failover configuration. In the event that you make your own
REST call, we highly recommend implementing a failover call into your code. This is done by checking if the response from the
webservice is null or if the error object has a TypeCode of 3; which would indicate a fatal error. In the event that either of these
instances occurs, the code will call the backup service. We strongly recommend implementing this fail over configuration into your
project. With failover enabled you can ensure that your application will function as normal in the event that the production endpoint
is unavailable.

cts BIN Validation'});

ls failed

Figure 6: Failover Configuration

As noted in the screen shot above, if the code detects a null response or TypeCode of 3 it will call the backupURL and attempt to get
a valid response. After this, the code checks if there was an error response returned; if so, then it will proceed as normal and display
the response to the user. If no error response is detected then the code will display a message saying that both rest calls have failed.

In this code both the primary and backup URLs are pointed to the same server, but once a production key is
purchased there should be 2 service references added to the project: one for the primary Service Objects endpoint
and one for the backup:

http://ws.serviceobjects.com/bv/BinValidation.asmx

http://wsbackup.serviceobjects.com/bv/BinValidation.asmx

www.serviceobjects.com 1.805.963.1700 1.800.694.6269

Copyright © 2001-2016 Service Objects, Inc. All rights reserved. Service Objects and the logo are unregistered trademarks of

Service Objects, Inc., and Service Objects, Inc. owns other registered and unregistered trademarks. Other names used herein
may be trademarks of their respective owners.

.. ™

: : o _
ServiceObjects @ %¢ Tutorial
INSIGHT ON DEMAND

Processing the Results From A Service Objects Web Service

After our curl request has completed the code will then move onto displaying the results from the webservice to the user. If an

error is returned from the web service, then code will display the error that was returned from the service.

Web Service Results
| Outputs || Values

|
|T}-‘pe ||Uset Input |
|T}-'p eCodeHZ I

|

|De5c ||Impmper BIN format. Please input a valid BIN

|De5cCode||2

Figure 7

If the user input is valid, the project will output all the results from the service. Below is a screen shot illustrating a valid response
from the BIN Validation web service.

Web Service Results

| Qutputs || Values |
B - |
[BankName |[KEYPOINT CREDIT UNION]|
|Pa}-"menﬂv[cthod ||DEBIT |
[CardType [PLATINUM |
|C01mtr}=Abbre1'iatiou”US |
[CountryName [UNITED STATES |
|PhoneNumbe:rs || |

Figure 8

If some other type of error happened in this process it will be caught in the catch statement and the resulting error will be displayed
to the user.

This code can be used for testing purposes to experiment with the different types of results that service will output depending on
what the user enters.

www.serviceobjects.com 1.805.963.1700 1.800.694.6269

Copyright © 2001-2016 Service Objects, Inc. All rights reserved. Service Objects and the logo are unregistered trademarks of

Service Objects, Inc., and Service Objects, Inc. owns other registered and unregistered trademarks. Other names used herein
may be trademarks of their respective owners.

.. ™

: : o _
ServiceObjects @ %¢ Tutorial
INSIGHT ON DEMAND

Implementing Business Logic into Your Web Application.

Simply displaying the results to the end user isn’t a necessarily a good use of the Service Objects web service, so in this section we

will go over an example of what it may look like to integrate some business logic around the results that web service returns. For this
example we’ll assume that a user is completing an order by inputting a credit card number. The application will take the user
entered credit card number and run the first 6 digits through the BIN Validation web service and determine whether or not a given
BIN number is valid. Along with this logic, we’ll integrate some logic that will display error responses based on potential error
messages from the service.

To implement this functionality, we’ll need to update the code in our restCall.php page. The new code contents for this page can be
found in the Updated_restCall_Contents.txt file that is included with this tutorial.

The project will have similar structure as it takes the input, makes the call to the web service and then displays the results. A few
changes have been made to this page to accommodate our new functionality. The first is that we have removed the LicenseKey
input from the web form. This will be hard coded into our application. The next major changes that we have implemented are in
how the application will process an error. We have added several if statements to check for different errors that the service will
return and then return various bits of information based on particular error found.

The first error that the application checks for is if an error with a TypeCode of 1 is returned. If error appears, then this indicates that
something went wrong with the LicenseKey for the service. This would indicate a number of things about the LicenseKey(i.e. not
enough transactions on the key, the key being in valid, etc). In the event that this error appears the code will display an error
message the user. It may also be helpful to notify the developer or tech support automatically if this error is reached.

If the code finds an error with a TypeCode and DescCode of 2, this indicates that the BIN was not formatted correctly. This can occur
if letters or special characters are put into BIN field. In this event, the code will display a message to the user. Below is a screenshot
of that message.

DOTS BIN Validation Rest Tutorial

BIN: [NOTABIN
Submit

BIN Results
||An Error Occurred.”The Credit Card Number Was Not a Valid format. Please Double check the number and try again.”

Figure 9: TypeCode and DescCode of 2
The next check the code will make will be for a fatal error with is a TypeCode of 3. Since we have already implemented failover

configuration into our project this code should only be reached in the unlikely event that the primary and secondary calls to the
service have failed. In the event this happens, this error should be logged and then sent to Service Objects for review.

www.serviceobjects.com 1.805.963.1700 1.800.694.6269

Copyright © 2001-2016 Service Objects, Inc. All rights reserved. Service Objects and the logo are unregistered trademarks of

Service Objects, Inc., and Service Objects, Inc. owns other registered and unregistered trademarks. Other names used herein
may be trademarks of their respective owners.

.. ™

: : o _
ServiceObjects @ %¢ Tutorial
INSIGHT ON DEMAND

The next set of error messages will display if the Error response from the web service had a TypeCode of 4. This code indicates that
BIN was properly formatted but there was not enough information available to call it valid. If a DescCode of 1 is returned in this
instance, then the service indicates that the BIN number was not a valid number. If a DescCode of 2 is returned along with a
TypeCode of 4, then this indicates that there may be conflicting information available about the BIN number. For example one

source of data may say the specific card has been issued by one bank and another source may say the card was issued by a different
bank.

A final else statement has been implemented in this block in the event that some other error occurs that was not caught in the
previous set of code. A full list of error codes that the BIN Validation service can return can be found on the Developer’s Guide for
the BIN Validation Service. Below is a link to that guide.

https://docs.serviceobjects.com/display/devguide/DOTS++BIN++Validation#DOTSBINValidation-Errors

If no error was found, then the code will display a message indicating the credit card number was accepted. If no error is found in a
production environment, then this can be used to proceed with a purchase that the user is completing. Below is a screen shot of the
message indicating a valid response.

DOTS BIN Validation Rest Tutorial

s
Subrmit

BIN Results

|Success.‘”The Credit card was accepted, please continue with your order.

Figure 10

www.serviceobjects.com 1.805.963.1700 1.800.694.6269

Copyright © 2001-2016 Service Objects, Inc. All rights reserved. Service Objects and the logo are unregistered trademarks of

Service Objects, Inc., and Service Objects, Inc. owns other registered and unregistered trademarks. Other names used herein
may be trademarks of their respective owners.

.. ™

: : o _
ServiceObjects @ %¢ Tutorial
INSIGHT ON DEMAND

Conclusion

That concludes our tutorial on how to create a web form that uses a RESTful call with PHP. If you have any questions please email

support@serviceobjects.com and we would gladly address any issues you may have.

www.serviceobjects.com 1.805.963.1700 1.800.694.6269

Copyright © 2001-2016 Service Objects, Inc. All rights reserved. Service Objects and the logo are unregistered trademarks of
Service Objects, Inc., and Service Objects, Inc. owns other registered and unregistered trademarks. Other names used herein
may be trademarks of their respective owners.

